Non-equilibrium plasmon liquid in a Josephson junction chain | Science Advances
Abstract
Equilibrium quantum systems are often described by a gas of weakly interacting normal modes. Bringing such systems far from equilibrium, however, can drastically enhance mode-to-mode interactions. Understanding the resulting liquid is a fundamental question for quantum statistical mechanics and a practical question for engineering driven quantum devices. To tackle this question, we probe the non-equilibrium kinetics of one-dimensional plasmons in a long chain of Josephson junctions. We introduce multimode spectroscopy to controllably study the departure from equilibrium, witnessing the evolution from pairwise coupling between plasma modes at weak driving to dramatic, high-order, cascaded couplings at strong driving. Scaling to many-mode drives, we stimulate interactions between hundreds of modes, resulting in near-continuum internal dynamics. Imaging the resulting non-equilibrium plasmon populations, we then resolve the nonlocal redistribution of energy in the response to a weak perturbation—an explicit verification of the emergence of a strongly interacting, non-equilibrium liquid of plasmons.